Invariant Subspaces

- For a linear operator T on \mathcal{V}, a subspace $\mathcal{X} \subseteq \mathcal{V}$ is said to be an invariant subspace under T whenever $T(\mathcal{X}) \subseteq \mathcal{X}$.
- In such a situation, T can be considered as a linear operator on \mathcal{X} by forgetting about everything else in \mathcal{V} and restricting T to act only on vectors from X. Hereafter, this restricted operator will be denoted by $T_{/ \mathcal{X}}$.

1. Let T be an arbitrary linear operator on a vector space \mathcal{V}. (a) Is the trivial subspace $\{\mathbf{0}\}$ invariant under T ? (b) Is the entire space \mathcal{V} invariant under T ?
2. Describe all of the subspaces that are invariant under the identity operator I on a space \mathcal{V}.

Invariant Subspaces and Matrix

Representations Let T be a linear operator on an n-dimensional space \mathcal{V}, and let $\mathcal{X}, \mathcal{Y}, \ldots$, \mathbb{Z} be subspaces of \mathcal{V} with respective dimensions r_{1}, r_{2}, \ldots, r_{k} and bases $\mathcal{B}_{\mathcal{X}}, \mathcal{B}_{\mathcal{Y}}, \ldots, \mathcal{B}_{\mathcal{Z}}$. Furthermore, suppose that $\sum_{i} r_{i}=n$ and $\mathcal{B}=\mathcal{B}_{\mathcal{X}} \cup \mathcal{B}_{\mathcal{Y}} \ldots \cup \mathcal{B}_{\mathcal{Z}}$ is a basis for \mathcal{V}.

- The subspace \mathcal{X} is an invariant subspace under T if and only if $[T]_{\mathcal{B}}$ has the blocktriangular form

$$
[T]_{\mathcal{B}}=\left(\begin{array}{cc}
A & B \\
\mathbf{0} & C
\end{array}\right)
$$

in which case $A=\left[T_{/ \mathcal{X}}\right]_{\mathcal{B}_{\mathcal{X}}} \in \operatorname{Mat}_{r_{1} \times r_{1}}(\mathbb{F})$.

- The subspaces $\mathcal{X}, \mathcal{Y}, \ldots, \mathcal{Z}$, are all invariant under T if and only if $[T]_{\mathcal{B}}$ has the blockdiagonal form

$$
[T]_{\mathcal{B}}=\left(\begin{array}{cccc}
A_{r_{1} \times r_{1}} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & B_{r_{2} \times r_{2}} & \ldots & \mathbf{0} \\
\vdots & \vdots & & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & C_{r_{k} \times r_{k}}
\end{array}\right),
$$

in which case $A=\left[T_{/ \mathcal{X}}\right]_{\mathcal{B}_{\mathcal{X}}}$,

$$
B=\left[T_{/ \mathcal{Y}}\right]_{\mathcal{B}_{\mathcal{Y}}}, \quad \ldots, \quad C=\left[T_{/ \mathcal{Z}}\right]_{\mathcal{B}_{\mathcal{Z}}}
$$

3. Suppose that T is a linear operator on a vector space \mathcal{V}. Check is it true that the following three
subspaces of \mathcal{V} are T-invariant:

$$
\operatorname{im}(T), \quad \operatorname{ker}(T) \quad \text { and } \quad \operatorname{ker}(T-\lambda I)
$$

(in last case, under additional assumption that $\operatorname{dim}(\operatorname{ker}(T-\lambda I)) \geq 1)$.
4. For $A=\left(\begin{array}{ccc}4 & 4 & 4 \\ -2 & -2 & -5 \\ 1 & 2 & 5\end{array}\right), \boldsymbol{x}_{1}=\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$ and $\boldsymbol{x}_{2}=(-1,2,-1)^{\top}$, show that the subspace \mathcal{X} spanned by $\mathcal{B}=\left\{x_{1}, x_{2}\right\}$ is an invariant subspace under A. Then describe the restriction A / \mathcal{X} and determine the coordinate matrix of $A_{/ \mathcal{X}}$ relative to \mathcal{B}.
5. Let T be a linear operator on an n-dimensional space \mathcal{V}, and let \mathcal{X} be subspaces of \mathcal{V} with dimension r and bases $\mathcal{B}_{\mathcal{X}}$. Show that if the subspace \mathcal{X} is an invariant subspace under T then $[T]_{\mathcal{B}}$ has the block-triangular form

$$
[T]_{\mathcal{B}}=\left(\begin{array}{cc}
A_{r_{1} \times r_{1}} & B \\
\mathbf{0} & C
\end{array}\right)
$$

in which case $A=\left[T_{/ \mathcal{X}}\right]_{\mathcal{B}_{\mathcal{X}}}$.

Triangular and Diagonal Block Forms When

 \bar{T} is an $n \times n$ matrix, the following two statements are true.- Q is a nonsingular matrix such that

$$
Q^{-1} T Q=\left(\begin{array}{cc}
A_{r \times r} & B_{r \times q} \\
\mathbf{0} & C_{q \times q}
\end{array}\right)
$$

if and only if the first r columns in Q span an invariant subspace under T.

- Q is a nonsingular matrix such that

$$
Q^{-1} T Q=\left(\begin{array}{cccc}
A_{r_{1} \times r_{1}} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & B_{r_{2} \times r_{2}} & \ldots & \mathbf{0} \\
\vdots & \vdots & & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & C_{r_{k} \times r_{k}}
\end{array}\right)
$$

if and only if $Q=\left(Q_{1}\left|Q_{2}\right| \ldots \mid Q_{k}\right)$ in which Q_{i} is $n \times r_{i}$, and the columns of each Q_{i} span an invariant subspace under T.
6. For $T=\left(\begin{array}{cccc}-1 & -1 & -1 & -1 \\ 0 & -5 & -16 & -22 \\ 0 & 3 & 10 & 14 \\ 4 & 8 & 12 & 14\end{array}\right), \boldsymbol{q}_{1}=\left(\begin{array}{c}2 \\ -1 \\ 0 \\ 0\end{array}\right)$
and $\boldsymbol{q}_{2}=(-1,2,-1,0)^{\top}$, verify that
$\mathcal{X}=\operatorname{span}\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$ is an invariant subspace under T, and then find a nonsingular matrix Q such that
$Q^{-1} T Q$ has the block-triangular form

$$
Q^{-1} T Q=\left[\begin{array}{cc|cc}
* & * & * & * \\
* & * & * & * \\
\hline 0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right]
$$

7. Consider again the matrix T and vectors \boldsymbol{q}_{1} and \mathbb{Q}_{2} of Exercise 6. Let $\mathcal{B}=\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}, \boldsymbol{q}_{4}\right\}$ be a basis for \mathbb{R}^{4} where

$$
\boldsymbol{q}_{3}=\left(\begin{array}{c}
0 \\
-1 \\
2 \\
-1
\end{array}\right) \quad \text { and } \quad \boldsymbol{q}_{4}=\left(\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right)
$$

Give an answer on the following questions. (a) Are the spaces $\mathcal{X}=\operatorname{span}\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$ and $\mathcal{Y}=\operatorname{span}\left\{\boldsymbol{q}_{3}, \boldsymbol{q}_{4}\right\}$ both invariant under T. (b) Is there some invertible matrix Q such that $Q^{-1} T Q$ is block diagonal. If answer is affirmative, find such matrix. (c) If it is possible find $\left[T_{/ \mathcal{X}}\right]_{\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}}$ and $\left[T_{/ \mathcal{Y}}\right]_{\left\{\boldsymbol{q}_{3}, \boldsymbol{q}_{4}\right\}}$.
8. Find all subspaces of \mathbb{R}^{2} that are invariant under

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right) .
$$

Remark In general, scalars λ for which $(A-\lambda I)$ is singular are called the eigenvalues of A, and the nonzero vectors in $\operatorname{ker}(A-\lambda I)$ are known as the associated eigenvectors for A. As Example 8 indicates, eigenvalues and eigenvectors are of fundamental importance in identifying invariant subspaces and reducing matrices by means of similarity transformations. Eigenvalues and eigenvectors will be discussed at length later.
9. Let T be the linear operator on \mathbb{R}^{4} defined by

$$
\begin{gathered}
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \\
=\left(x_{1}+x_{2}+2 x_{3}-x_{4}, x_{2}+x_{4}, 2 x_{3}-x_{4}, x_{3}+x_{4}\right)
\end{gathered}
$$

and let $\mathcal{X}=\operatorname{span}\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ be the subspace that is spanned by the first two unit vectors in \mathbb{R}^{4}. (a) Explain why \mathcal{X} is invariant under T. (b) Determine $\left[T_{/ \mathcal{X}}\right]_{\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}}$. (c) Describe the structure of $[T]_{\mathcal{B}}$, where \mathcal{B} is any basis obtained from an extension of $\left\{e_{1}, e_{2}\right\}$.
10. Let T and Q be the matrices

$$
\begin{aligned}
& T=\left(\begin{array}{cccc}
-2 & -1 & -5 & -2 \\
-9 & 0 & -8 & -2 \\
2 & 3 & 11 & 5 \\
3 & -5 & -13 & -7
\end{array}\right), \quad \text { and } \\
& Q=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
1 & 1 & 3 & -4 \\
-2 & 0 & 1 & 0 \\
3 & -1 & -4 & 3
\end{array}\right)
\end{aligned}
$$

(a) Explain why the columns of Q are a basis for \mathbb{R}^{4}. (b) Verify that $\mathcal{X}=\operatorname{span}\left\{Q_{* 1}, Q_{* 2}\right\}$ and $\mathcal{Y}=\operatorname{span}\left\{Q_{* 3}, Q_{* 4}\right\}$ are each invariant subspaces under T. (c) Describe the structure of $Q^{-1} T Q$ without doing any computation. (d) Now compute the product $Q^{-1} T Q$ to determine

$$
\left[T_{/ \mathcal{X}}\right]_{\left\{Q_{* 1}, Q_{* 2}\right\}} \quad \text { and } \quad\left[T_{/ \mathcal{L}}\right]_{\left\{Q_{* 3}, Q_{* 4}\right\}} .
$$

11. (a) Show that if there is a one-dimensional subspace of \mathcal{V} that is invariant under T, then T has a nonzero eigenvector. With another words show that if there is a one-dimensional subspace of \mathcal{V} that is invariant under T, then T has a nonzero \boldsymbol{x} such that $T(\boldsymbol{x})=\lambda \boldsymbol{x}$.
(b) Let T be a linear operator on \mathbb{R}^{2} with matrix representation relative to the standard basis given by

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Show that the only invariant subspaces of T are \mathbb{R}^{2} and $\{0\}$.
12. Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be a given operator defined with
$T\left(a+b t+c t^{2}\right)=a+b+c+(a+3 b) t+(a-b+2 c) t^{2}$.
Find all one-dimensional subspaces of \mathcal{P}_{2} that are invariant under T.
13. Let $T: \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be a given linear operator defined with

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left(\begin{array}{cc}
a-b & 4 a-4 b \\
-a+2 b+c & b+c
\end{array}\right)
$$

Find all one-dimensional subspaces that are invariant under T.
14. Let T be a linear operator on a finite-dimensional vector space \mathcal{V}, and let \mathcal{W} be a T-invariant subspace of \mathcal{V}. Assume that \mathcal{B} and \mathcal{B}^{\prime} are basis for \mathcal{V} and \mathcal{W}, respectively. Show that the polynomial $g(x)=\operatorname{det}\left(\left[T_{/ \mathcal{W}}\right]_{\mathcal{B}^{\prime}}-x I\right)$ divides the polynomial $p(x)=\operatorname{det}\left([T]_{\mathcal{B}}-x I\right)$.
15. (The Cayley-Hamilton Theorem) Let T be a linear operator on finite dimensional vector space \mathcal{V}, let \mathcal{B} denote a basis of \mathcal{V} and let $f(x)=\operatorname{det}\left([T]_{\mathcal{B}}-x I\right)$ be the given polynomial. Show that then

$$
f(T)=T_{0} \quad \text { (the zero transformation) }
$$

(i.e. $T_{0}(\boldsymbol{x})=\mathbf{0}$ for all $\boldsymbol{x} \in \mathcal{V}$).

InC: $3,4,6,7,8,9,11$. HW: $12,13,14,15+$ few more problems from the web page http://osebje. famnit.upr.si/~~penjic/linearnaAlgebra/.

