7 Invariant Subspaces

Invariant Subspaces

- For a linear operator T on \mathcal{V} , a subspace $\mathcal{X} \subseteq \mathcal{V}$ is said to be an *invariant subspace* under T whenever $T(\mathcal{X}) \subseteq \overline{\mathcal{X}}$.
- In such a situation, T can be considered as a linear operator on \mathcal{X} by forgetting about everything else in \mathcal{V} and restricting T to act only on vectors from X. Hereafter, this restricted operator will be denoted by $T_{/\mathcal{X}}$.

1. Let *T* be an arbitrary linear operator on a vector space \mathcal{V} . (a) Is the trivial subspace $\{\mathbf{0}\}$ invariant under *T*? (b) Is the entire space \mathcal{V} invariant under *T*?

2. Describe all of the subspaces that are invariant under the identity operator I on a space \mathcal{V} .

Invariant Subspaces and Matrix

Representations Let T be a linear operator on an n-dimensional space \mathcal{V} , and let $\mathcal{X}, \mathcal{Y}, ..., \mathbb{Z}$ be subspaces of \mathcal{V} with respective dimensions r_1 , $r_2, ..., r_k$ and bases $\mathcal{B}_{\mathcal{X}}, \mathcal{B}_{\mathcal{Y}}, ..., \mathcal{B}_{\mathcal{Z}}$. Furthermore, suppose that $\sum_i r_i = n$ and $\mathcal{B} = \mathcal{B}_{\mathcal{X}} \cup \mathcal{B}_{\mathcal{Y}} ... \cup \mathcal{B}_{\mathcal{Z}}$ is a basis for \mathcal{V} .

• The subspace \mathcal{X} is an invariant subspace under T if and only if $[T]_{\mathcal{B}}$ has the blocktriangular form

$$[T]_{\mathcal{B}} = \begin{pmatrix} A & B \\ \mathbf{0} & C \end{pmatrix},$$

in which case $A = [T_{\mathcal{X}}]_{\mathcal{B}_{\mathcal{X}}} \in \operatorname{Mat}_{r_1 \times r_1}(\mathbb{F}).$

• The subspaces \mathcal{X} , \mathcal{Y} ,..., \mathcal{Z} , are all invariant under T if and only if $[T]_{\mathcal{B}}$ has the blockdiagonal form

$$[T]_{\mathcal{B}} = \begin{pmatrix} A_{r_1 \times r_1} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & B_{r_2 \times r_2} & \dots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & C_{r_k \times r_k} \end{pmatrix},$$

in which case $A = \begin{bmatrix} T_{\mathcal{X}} \end{bmatrix}_{\mathcal{B}_{\mathcal{X}}}$,

$$B = \begin{bmatrix} T_{/\mathcal{Y}} \end{bmatrix}_{\mathcal{B}_{\mathcal{Y}}}, \quad \dots, \quad C = \begin{bmatrix} T_{/\mathcal{Z}} \end{bmatrix}_{\mathcal{B}_{\mathcal{Z}}}.$$

3. Suppose that T is a linear operator on a vector space \mathcal{V} . Check is it true that the following three

subspaces of \mathcal{V} are *T*-invariant:

$$\operatorname{im}(T)$$
, $\operatorname{ker}(T)$ and $\operatorname{ker}(T - \lambda I)$

(in last case, under additional assumption that $\dim(\ker(T - \lambda I)) \ge 1$).

4. For
$$A = \begin{pmatrix} 4 & 4 & 4 \\ -2 & -2 & -5 \\ 1 & 2 & 5 \end{pmatrix}$$
, $\mathbf{x}_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ and $\mathbf{x}_2 = (-1, 2, -1)^{\top}$, show that the subspace \mathcal{X} spanned by $\mathcal{B} = \{x_1, x_2\}$ is an invariant subspace under A . Then describe the restriction $A_{/\mathcal{X}}$ and determine the coordinate matrix of $A_{/\mathcal{X}}$ relative to \mathcal{B} .

5. Let *T* be a linear operator on an *n*-dimensional space \mathcal{V} , and let \mathcal{X} be subspaces of \mathcal{V} with dimension *r* and bases $\mathcal{B}_{\mathcal{X}}$. Show that if the subspace \mathcal{X} is an invariant subspace under *T* then $[T]_{\mathcal{B}}$ has the block-triangular form

$$[T]_{\mathcal{B}} = \begin{pmatrix} A_{r_1 \times r_1} & B \\ \mathbf{0} & C \end{pmatrix},$$

in which case $A = \begin{bmatrix} T_{/\mathcal{X}} \end{bmatrix}_{\mathcal{B}_{\mathcal{X}}}$.

Triangular and Diagonal Block Forms When \overline{T} is an $n \times n$ matrix, the following two statements are true.

• Q is a nonsingular matrix such that

$$Q^{-1}TQ = \begin{pmatrix} A_{r \times r} & B_{r \times q} \\ \mathbf{0} & C_{q \times q} \end{pmatrix}$$

if and only if the first r columns in Q span an invariant subspace under T.

• Q is a nonsingular matrix such that

$$Q^{-1}TQ = \begin{pmatrix} A_{r_1 \times r_1} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & B_{r_2 \times r_2} & \dots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & C_{r_k \times r_k} \end{pmatrix},$$

if and only if $Q = (Q_1|Q_2|...|Q_k)$ in which Q_i is $n \times r_i$, and the columns of each Q_i span an invariant subspace under T.

6. For
$$T = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & -5 & -16 & -22 \\ 0 & 3 & 10 & 14 \\ 4 & 8 & 12 & 14 \end{pmatrix}$$
, $\boldsymbol{q}_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \end{pmatrix}$

and $\boldsymbol{q}_2 = (-1, 2, -1, 0)^{\top}$, verify that $\mathcal{X} = \operatorname{span}\{\boldsymbol{q}_1, \boldsymbol{q}_2\}$ is an invariant subspace under T, and then find a nonsingular matrix Q such that $Q^{-1}TQ$ has the block-triangular form

$$Q^{-1}TQ = \begin{bmatrix} * & * & * & * \\ & * & * & * \\ \hline 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$$

7. Consider again the matrix T and vectors q_1 and \mathbb{Q}_2 of Exercise 6. Let $\mathcal{B} = \{q_1, q_2, q_3, q_4\}$ be a basis for \mathbb{R}^4 where

$$oldsymbol{q}_3 = egin{pmatrix} 0 \ -1 \ 2 \ -1 \end{pmatrix} \qquad ext{and} \qquad oldsymbol{q}_4 = egin{pmatrix} 0 \ 0 \ -1 \ 1 \end{pmatrix}.$$

Give an answer on the following questions. (a) Are the spaces $\mathcal{X} = \operatorname{span}\{\boldsymbol{q}_1, \boldsymbol{q}_2\}$ and $\mathcal{Y} = \operatorname{span}\{\boldsymbol{q}_3, \boldsymbol{q}_4\}$ both invariant under T. (b) Is there some invertible matrix Q such that $Q^{-1}TQ$ is block diagonal. If answer is affirmative, find such matrix. (c) If it is possible find $[T_{\mathcal{X}}]_{\{\boldsymbol{q}_1, \boldsymbol{q}_2\}}$ and $[T_{\mathcal{Y}}]_{\{\boldsymbol{q}_3, \boldsymbol{q}_4\}}$.

8. Find all subspaces of \mathbb{R}^2 that are invariant under

$$A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}.$$

<u>Remark</u> In general, scalars λ for which $(A - \lambda I)$ is singular are called the *eigenvalues* of A, and the nonzero vectors in ker $(A - \lambda I)$ are known as the associated *eigenvectors* for A. As Example 8 indicates, eigenvalues and eigenvectors are of fundamental importance in identifying invariant subspaces and reducing matrices by means of similarity transformations. Eigenvalues and eigenvectors will be discussed at length later.

9. Let *T* be the linear operator on \mathbb{R}^4 defined by

$$T(x_1, x_2, x_3, x_4) =$$

$$= (x_1 + x_2 + 2x_3 - x_4, x_2 + x_4, 2x_3 - x_4, x_3 + x_4)$$

and let $\mathcal{X} = \operatorname{span}\{\boldsymbol{e}_1, \boldsymbol{e}_2\}$ be the subspace that is spanned by the first two unit vectors in \mathbb{R}^4 . (a) Explain why \mathcal{X} is invariant under T. (b) Determine $[T_{\mathcal{X}}]_{\{\boldsymbol{e}_1, \boldsymbol{e}_2\}}$. (c) Describe the structure of $[T]_{\mathcal{B}}$, where \mathcal{B} is any basis obtained from an extension of $\{\boldsymbol{e}_1, \boldsymbol{e}_2\}$.

10. Let T and Q be the matrices

$$T = \begin{pmatrix} -2 & -1 & -5 & -2 \\ -9 & 0 & -8 & -2 \\ 2 & 3 & 11 & 5 \\ 3 & -5 & -13 & -7 \end{pmatrix}, \text{ and}$$
$$Q = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 3 & -4 \\ -2 & 0 & 1 & 0 \\ 3 & -1 & -4 & 3 \end{pmatrix}$$

(a) Explain why the columns of Q are a basis for \mathbb{R}^4 . (b) Verify that $\mathcal{X} = \operatorname{span}\{Q_{*1}, Q_{*2}\}$ and $\mathcal{Y} = \operatorname{span}\{Q_{*3}, Q_{*4}\}$ are each invariant subspaces under T. (c) Describe the structure of $Q^{-1}TQ$ without doing any computation. (d) Now compute the product $Q^{-1}TQ$ to determine

$$[T_{\mathcal{X}}]_{\{Q_{*1},Q_{*2}\}}$$
 and $[T_{\mathcal{Y}}]_{\{Q_{*3},Q_{*4}\}}.$

- 11. (a) Show that if there is a one-dimensional subspace of \mathcal{V} that is invariant under T, then T has a nonzero eigenvector. With another words show that if there is a one-dimensional subspace of \mathcal{V} that is invariant under T, then T has a nonzero \boldsymbol{x} such that $T(\boldsymbol{x}) = \lambda \boldsymbol{x}$.
- (b) Let T be a linear operator on \mathbb{R}^2 with matrix representation relative to the standard basis given by

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Show that the only invariant subspaces of T are \mathbb{R}^2 and $\{0\}$.

12. Let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be a given operator defined with

$$T(a+bt+ct^{2}) = a+b+c+(a+3b)t+(a-b+2c)t^{2}.$$

Find all one-dimensional subspaces of \mathcal{P}_2 that are invariant under T.

13. Let $T : \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \to \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be a given linear operator defined with

$$T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{pmatrix} a-b & 4a-4b \\ -a+2b+c & b+c \end{pmatrix}$$

Find all one-dimensional subspaces that are invariant under T.

14. Let T be a linear operator on a finite-dimensional vector space \mathcal{V} , and let \mathcal{W} be a T-invariant subspace of \mathcal{V} . Assume that \mathcal{B} and \mathcal{B}' are basis for \mathcal{V} and \mathcal{W} , respectively. Show that the polynomial $g(x) = \det([T_{/\mathcal{W}}]_{\mathcal{B}'} - xI)$ divides the polynomial $p(x) = \det([T]_{\mathcal{B}} - xI)$.

15. (The Cayley-Hamilton Theorem) Let T be a linear operator on finite dimensional vector space \mathcal{V} , let \mathcal{B} denote a basis of \mathcal{V} and let $f(x) = \det([T]_{\mathcal{B}} - xI)$ be the given polynomial. Show that then

 $f(T) = T_0$ (the zero transformation) (i.e. $T_0(\boldsymbol{x}) = \boldsymbol{0}$ for all $\boldsymbol{x} \in \mathcal{V}$).

InC: 3, 4, 6, 7, 8, 9, 11. HW: 12, 13, 14, 15 + few more problems from the web page http://osebje.famnit.upr.si/~penjic/linearnaAlgebra/.